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Abstract—The authors’ goal in this paper has been to define
a minimal and orthogonal DSEL (Domain-Specific Embedded
Language) that would add parallelism to an imperative language.
It will be demonstrated that this DSEL will guarantee correct, ef-
ficient schedules. The schedules will be shown to be deadlock- and
racecondition-free. The efficiency of the schedules will be shown
to add no worse than a poly-logarithmic order to the algorithmic
run-time of the program on a CREW-PRAM (Concurrent-Read,
Exclusive-Write, Parallel Random-Access Machine[15]) or EREW-
PRAM (Exclusive-Read EW-PRAM([15]) computation model. Fur-
thermore the DSEL assists the user with regards to debugging.
An implementation of the DSEL in C++ exists.
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I. INTRODUCTION

The current von Neumann model of super-scalar com-
puter architectures has lead to increased penalties associ-
ated with misses in the memory-subsystem, limiting ILP
(Instruction-Level Parallelism), also increased design com-
plexity and power consumption. Fetching instructions from
different memory banks, i.e. introducing threads, would allow
an increase in ILP.

Hence the increasing prevalence of computers with multiple
cores, leading to a rise in the available parallelism to the
programming community. This parallelism has been exposed
via various approaches: ranging from languages e.g. UPC,
compilers e.g. HPF or libraries e.g. OpenMP or Cilk. Yet the
common folklore in computer science has been that it is hard
to program parallel algorithms correctly.

This paper presents an alternative library-based approach to
expose this parallelism by defining a minimal and orthogonal
DSEL within the host language of the library. The DSEL
proposed differs from other approaches because it guaran-
tees correct, efficient schedules with algorithmic run-time
guarantees and assists the user with debugging their parallel
programs. An implementation of the DSEL in C++ exists: see

[9].

II. RELATED WORK
Summarizing [8]; with varying degrees of success the fol-
lowing work has been done to assist in using this parallelism:
e Auto-parallelizing compilers, via the data-flow com-
munity [13].
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e Language support: such as Erlang [16] or UPC [4].

e Library support: such as POSIX threads (pthreads),
OpenMP, Intel’s TBB [11] or Cilk [7]. Intel’s TBB
lacks parallel algorithms, nor provided any correctness
guarantees. Also the API it has exposed suffers from
mixing code relating to the parallel schedule and the
business logic, which would make testing more complex.

I[II. MOTIVATION

The compiler and language based approaches have been
the only way to address both correctness or optimization. If
programmers were to take advantage of these, they may have
to re-implement their programs, a hard change for businesses,
limiting the adoption of new languages or novel compilers.

Amongst the criticisms raised regarding the use of libraries
[8], [10] such as pthreads or OpenMP have been:

e When used in object-orientated programming, they have
suffered from inheritance anomalies [2].

e A related issue has been entangling the thread-safety,
thread scheduling and business logic. Each program
becomes bespoke, requiring re-testing for threading and
business logic issues.

e Debugging such code has been found to be very hard
and an open area of research for some time.

Assuming that the language has to be immutable, a DSEL,
defined within that language, by a library that supports the
following requirements will now be presented.

IV. THE DSEL TO ASSIST PARALLELISM
The DSEL should have the following properties:

o Target general purpose threading, defined as scheduling
where conditionals or loop-bounds may not be computed
at compile-time, nor memoized!.

e Support both data-flow and data-parallel constructs suc-
cinctly and naturally within the host language.

e Provide guarantees regarding deadlocks and race-
conditions.

e Provide guarantees regarding the algorithmic complexity
of any parallel schedule implemented with it.

'A compile or run-time optimisation technique involving a space-time
tradeoff. Re-computation of pure functions with the same arguments may be
avoided by caching the result.
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e Assist in debugging any use of it.
e Use an existing host language would avoid reimplement-
ation, so more likely to be used in business.
First the grammar of the DSEL will be given together with
a discussion of the properties. The theoretical results derived
from the grammar of the DSEL will follow then finally an
example of using the DSEL will be given.

A. Detailed Grammar of the DSEL

C++ was chosen to be the host language because it has been
considered hard to parallelize? and has the ability to extend its
type system. Familiarity with its grammar, defined in Annex
A of the ISO C++ Standard [6], would assist the reader.

Clarifications of the notation used:

e Has been based upon that used for context-free gram-
mars.

e o means that the keyword is optional.

e 4. specifies the default value from the set of values for
the keyword.

Initially the terminals, classified as types, then the rewrite rules
that comprise the DSEL will be given in the following sections.

1) Types, or terminals: The primary types used within the
DSEL should be obtained from the thread-pool-type.

1) Thread pools can be composed with various subtypes
that could be used to fundamentally affect the imple-
mentation and performance of any client software:

thread-pool-type—
thread_pool work-policy size-policy pool-
adaptor
e A thread_pool would contain a collection of
threads, which may differ from the number of
physical cores. This could allow for implement-
ations to virtualize the multiple cores. An imple-
mentation may enforce how an instance of a pool
should be destroyed, synchronising the threads
to ensure they are destroyed and any work in
the process of mutation appropriately terminated
before the pool would be finally destroyed.
work-policy—
worker_threads_get_work |
one_thread_distributes
e The library should implement the classic work-
stealing or master-slave work sharing algorithms.
The specific choice could affect any internal
queues that would contain unprocessed work.
For example a worker_threads_get_work
queue might be implemented such that the addi-
tion and removal of work could be independent.
size-policy—
fixed_size | tracks_to_max |
infinite
e The size-policy combined with the threading-
model could be used to optimize the implement-
ation of the thread-pool-type.

2Chapter 30, “Thread Support Library” in the C++ Standard has not
addressed the properties of the DSEL described in this paper.
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e tracks_to_max would implement some model
of the cost of maintaining threads. If threads
had low overheads to create & destroy, then an
infinite size might be a reasonable approx-
imation, conversely opposite characteristics might
be better implemented in a fixed_size pool.

pool-adaptor—

Jjoinability api-type threading-model priority-
modeqp COMparator yp

Jjoinability—

joinable | nonjoinable

e The joinability type has been provided to al-
low for optimizations of the thread-pool-type. A
nonjoinable thread-pool-type could be more
simply implemented, but also faster in operation.

api-type—

posix_pthreads | IBM cyclops |
omitted for brevity

e posix_pthreads would be an implementation
of the heavyweight_threading pthreads
API. IBM_cyclops would be an implementa-
tion of the l1ightweight_threading IBM
BlueGene/C Cyclops [1] APL The size-policy type
may also interact with this type.

threading-model—

sequential_mode |
heavyweight_threading |
lightweight_threading

e This specifier provides a coarse representation of
the various implementations of threading in the
many architectures. For example pthreads would
be heavyweight_threading whereas Cyc-
lops would be lightweight_threading.
Separation of the threading model versus the API
allows multiple, different, threading APIs on the
same platform, for example if there were to be
a GPU available, there could be two different
threading models within the same program.

e The sequential_mode has been provided
to ensure implementations removal all thread-
ing aspects within the implementing library,
which would ease the burden on the program-
mer in identifying bugs within their code. If
sequential_mode were specified then all
threading should be removed from the imple-
menting library. All remaining bugs should reside
in the user-code, once debugged, could then
be parallelized by changing this specifier and
re-compiling. Then any further bugs introduced
would be due to bugs within the parallel aspects
of their code, or the implementing library. We
consider this feature of paramount importance: it
directly addresses the complex task of debugging
parallel software: the algorithm by which the
parallelism should be implemented has been sep-
arated from the code implementing the mutations
on the data.



priority-mode—
normal_fifoge |
prioritized_queue
e The prioritized_queue would allow spe-
cification of whether certain instances of work-
to-be-mutated could be mutated before other in-
stances according to the specified comparator.

comparator—
std: :lessSgef

e A binary function-type that would be used to
specify a strict weak-ordering on the elements
within the prioritized_queue.

2) Adapted collections should assist in providing thread-
safety and specify the memory-access model of the
collection:

safe-colln—
safe_colln collection-type lock-type

e This adaptor wraps the collection-type and lock-
type in one object; also providing some thread-
safe operations upon and access to the underlying
collection. This access should be provided because
of the inheritance anomalies described in [2]. This
design decision has been chosen for simplicity.

e The adaptor also provides access to both read-lock
and write-lock types, which may be the same, but
allow the intent of the operations to be clearer.

lock-type—

critical_section_lock_type
| read_write |
read_decaying_write

e A critical_section_lock_type would
be a single-reader, single-writer lock, a simulation
of EREW semantics. Different architectures could
implement this lock more optimally.

e A read_write lock would be a multi-readers,
single-write lock, a simulation of CREW se-
mantics.

e A read_decaying_write lock would be a
specialization of a read_write lock that also
implements atomic transformation of a write-lock
into a read-lock.

e The lock must be used to govern the operations
on the collection, and not operations on the items
contained within the collection.

e The lock-type would be used to specify if
EREW or CREW operations would be allowed.
For example if EREW semantics have been
specified then overlapped dereferences of the
execution_context resultant from parallel-
algorithms operating upon the same instance of a
safe-colln should be strictly ordered by an imple-
mentation. Alternatively if CREW semantics were
specified then an implementation may allow read-
operations upon the same instance of the safe-
colln to occur in parallel, assuming they were not
blocked by a write operation.
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collection-type:

A standard collection such as an STL-style
list or vector, etc.

3) The thread-pool-type should define further sub-types (or
terminals in the grammatical sense) for programming
convenience:

execution_context:

An opaque type of future that a transfer re-
turns and a proxy to the result_type that
the mutation creates. Access to the instance of
the result_type implicitly causes the call-
ing thread to wait until the mutation has been
completed, a data-flow operation. Implement-
ations of execution_context must spe-
cifically prohibit: aliasing instances of these
types, copying instances of these types and
assigning instances of these types. This would
ensure that the properties of the DSEL have
been maintained.

joinable:

A modifier for transferring work-to-be-
mutated into an instance of thread-pool-
type, a data-flow operation. If the work-to-be-
mutated were transferred using this modifier,
then the return result of the transfer must be
an execution_context. This should be
used to obtain the result of the mutation.

nonjoinable:

Another modifier for transferring work-to-
be-mutated into an instance of thread-pool-
type, a data-flow operation. If the work-to-be-
mutated were transferred using this modifier,
then the return result of the transfer must be
nothing. The mutation could occur at some
indeterminate time, the result of which could,
for example, be detectable by side effects of
the mutation within the result_type of
the work-to-be-mutated.

2) Operators or rewrite rules on the thread-pool-type: These
operations tie together the types and express the restrictions
upon the generation of the CFG (Control Flow Graph) that
may be created.

1) Transfer of work-to-be-mutated into an instance of

thread-pool-type has been defined as follows:
transfer-future—

execution-context-resultop
thread-pool-type transfer-operation

execution-context-result—

execution_context <<

The token sequence “<<” defines the transfer
operation, and also has been used in the definition
of the transfer-modifier-operation, amongst other
places.

An execution_context should be
created only via a transfer of work-to-be-
mutated with the joinable modifier into a
thread_pool defined with the joinable



Jjoinability type. It must be an error to transfer
work into a thread_pool that has been
defined using the nonjoinable type. An
execution_context should not be creatable
without transferring work, so guaranteed to
contain an instance of result_type of a
mutation, implying data-flow like operation.
transfer-operation—
transfer-modifier-operationy
operation
transfer-modifier-operation—
<< transfer-modifier
transfer-modifier—
joinable | nonjoinable
transfer-data-operation—
<< transfer-data
transfer-data—
work-to-be-mutated |
algorithm
3) The Data-Parallel Operations and Algorithms: This sec-
tion will describe the various parallel algorithms defined within
the DSEL.

1) The data-parallel-algorithms have been defined as fol-
lows:

transfer-data-

data-parallel-

data-parallel-algorithm—
accumulate | ...

e The style and arguments of the data-parallel-
algorithms should be similar to those of the STL
in [6]. Specifically they should all take a safe-colln
as an argument to specify the range and functors
as specified within the STL. No explicit support
has been made for loop-carried dependencies in
the functor argument.

o If the algorithms were to be implemented us-
ing techniques described in [5] and [3] then the
algorithms would be optimal with O (log (p))
complexity in distributing the work to the
thread pool optimal algorithmic complexity of

O (% —1+1log(p)) where n would be the num-

ber of items to be computed and p would be the
number of threads, ignoring the operation time of
the mutations.

B. Properties of the DSEL

In this section some results will be presented that derive
from the previous section, the first of which will show that the
CFG should be a tree from which the other results will derive.

In all of the theorems presented, we shall assume that the
user should refrain from using any other threading-related
items or atomic objects other than those defined in section
IV-A and that the work they wish to mutate may not be aliased
by any other object.

Theorem 1. The CFG of any program must be an acyclic
directed graph comprising of at least one singly-rooted tree,
but may contain multiple singly-rooted, independent, trees.
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Proof: From the definitions of the
execution_context IV-A1.3.3, joinable IV-A1.3.3,
transfer-future IV-A2.1.1 & execution-context-result IV-A2.1.1
the transfer of work-to-be-mutated into the thread_pool
may be done only once, the result of which returns a single
execution_context. This would imply that for a node
in the CFG, each transfer to the thread-pool-type represents a
single forward-edge connecting the execution_context
with the child-node that contains the mutation. Each node
may perform none, one or more transfers resulting in
none, one or more child-nodes. A node with no children
is a leaf-node, containing only a mutation. The back-edge
from the mutation to the parent-node would be the edge
connecting the result of the mutation with the dereference of
the execution_context. Back-edges to multiple parent
nodes cannot be created, because of definition IV-A1.3.3,
so the execution_context and the dereference must
occur in the same node. Therefore this sub-graph would
be acyclic moreover a tree. According to the definitions of
transfer-future and execution-context-result each child-node
would either return via the back edge to the parent or generate
a further sub-tree, to which the above properties apply. If the
entry-point of the program were to be the single thread that
runs main (), i.e. the single root, this would be the root of
the above tree, thus the whole CFG must be a tree. If there
were more entry-points, each one can only generate a tree
per entry-point, as the execution_contexts cannot be
aliased nor copied between nodes, by definition. ]

According to the above theorem, one may appreciate that
a conforming implementation of the DSEL would implement
data-flow in software.

Theorem 2. The schedule of a CFG satisfying Theorem 1
should be guaranteed to be free of race-conditions.

Proof: A race-condition in the CFG would be represented
by a child node with two parent nodes, with forward-edges
connecting the parents to the child. Note that the CFG must
an acyclic tree according to Theorem 1, then this sub-graph
cannot be represented in a tree, so the schedule must be race-
condition free. |

Theorem 3. The schedule of a CFG satisfying Theorem 1
should be guaranteed to be free of deadlocks.

Proof: To create a deadlock would require that
execution_contexts C and D had been shared between
two threads. i.e. C had been passed from node A
to sibling node B, and vice-versa to D. But aliasing
execution_contexts has been explicitly forbidden by
definition IV-A1.3.3. u

Corollary 4. The schedule of a CFG satisfying Theorem
1 should be guaranteed to be free of race-conditions and
deadlocks.

Proof: Given a CFG for which Theorem 1 held, it must be
proven that the Theorems 2 and 3 should not be mutually ex-
clusive. First suppose that a such CFG could exist that satisfied
Theorem 3 but not 2. Therefore multiple forward edges from
the same execution_context would be allowed, but there



must be multiple back-edges, because of Theorem 1, causing
Theorem 3 to not hold, a contradiction, therefore such a CFG
cannot exist. Therefore any CFG for which Theorem 1 held,
must also satisfy both Theorems 2 and 3. |

Theorem 5. The schedule of a CFG satisfying Theorem 1
should be executed with an algorithmic complexity of at least
O (log (p)) and at most O (n), in units of time to mutate the
work, where n would be the number of work items to be
mutated on p processors. The algorithmic order of the minimal
time would be poly-logarithmic, so within NC, therefore at
least optimal.

Proof: Given a tree with at most n leaf-nodes. It has
been proven in [5] that to distribute n items of work onto p
processors may be performed with an algorithmic complexity
of O (log (n)). The fastest computation time would be if the
schedule were a balanced tree, where the computation time
would be the depth of the tree, i.e. O (log(n)) in the same
units. If the n items of work were to be greater than the p
processors, then O (log (p)) < O (log (n)), so the computation
time would be slower than O (log (p)). A node may take at

most O (3 —1+log(p) ) computations according to defini-

tion IV-A3.1.1, if a data-parallel-algorithm were transferred.
The slowest computation time would be if the tree were
a chain, i.e. O (n) time. In those cases this implies that a
conforming implementation should add at most a constant
order to the execution time of the schedule. ]

C. Some Example Usage

Two toy examples are given, based upon an example imple-
mentation in a library called PPD (Parallel Pixie Dust) [9].

The first example shows the simple data-flow usage of the
DSEL.

Listing 1. Data-flow example of a Thread Pool and Future.
struct res_t { int i; };
struct work_type {

void process(res_t &) ()

typedef ppd::thread_pool<
pool_traits :: worker_threads_get_work , pool_traits
pool_adaptor<generic_traits
> pool_type:
typedef pool_type::joinable joinable;
pool_type pool (2);
auto const &context=pool<<joinable()<<work_type ();
context—>i;

s fixed_size ,
::joinable , posix_pthreads , heavyweight_threading >

The typedef for the thread-pool-type would be needed once

and could be held in a configuration trait in a header file.
The second example shows how a data-parallel version of
the C++ accumulate algorithm might appear.

Listing 2. Example of a parallel version of an STL algorithm.
typedef ppd::thread_pool<
pool_traits :: worker_threads_get_work . pool_traits :: fixed_size ,
pool_adaptor<generic_traits :: joinable , posix_pthreads ,heavyweight_threading >
> pool_type:
typedef ppd::safe_colln<
vector<int >,lock_traits
> vtr_colln_t;

ciceritical_section_lock_type

typedef pool_type::joinable joinable:;

vir_colln_t v: v.push_back(1); v.push_back(2);

auto const &context=pool<<joinable ()
<<pool.accumulate (v,1,std:: plus<vtr_colln_t:: value_type >()):

assert(*context==4);

This example illustrates a map-reduce operation. An imple-
mentation might:
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1) take sub-ranges within the safe-colln, which would be
distributed within the thread_pool, within which
the mutations would be performed sequentially, their
results combined via the functor, without locking any
other thread,

these results would be combined, the implementation

providing suitable locking, computing the final result.

2)
The accumulate algorithm produced the CFG in figure 1,

Figure 1.

CFG for the accumulate data-parallel algorithm.

the key is:
e For the node-titles:

o main (): the C++ entry-point for the program,

o accumulate & distribute_root: the root-
node of the transferred algorithm,

o distribute:

= internally: distributed the input collection re-
cursively within the graph,

= leaf nodes: performed the mutation upon the
sub-range.

The labels for the edges mean:

o s: sequential, shown for exposition purposes only,

o wv: vertical, mutation performed by thread within
thread_pool.

o h: horizontal, mutation performed by a thread
spawned within an execution_context. En-
sures that sufficient free threads available for
fixed_size thread_pools.

The input collection has been distributed across eight threads
in the thread_pool and the CFG generated was a balanced,
acyclic tree, satisfying Theorem 1, Corollary 4 and Theorem
5.

V. CONCLUSIONS

A DSEL has been formulated:

e targets general purpose threading using both data-flow
and data-parallel constructs within an existing host lan-
guage,

e ensures there should be no deadlocks and race-
conditions,



e provides guarantees regarding the algorithmic complex-
ity, on a CREW-PRAM or EREW-PRAM computation
model, of any schedule implemented

e and assists with debugging any use of it.

Intuition suggests that this result should have come as no sur-
prise considering the work done relating to auto-parallelizing
compilers, which work within the AST and CFGs of the parsed
program([14].

Note that the DSEL presented in this paper may be hosted in

any programming language, the choice of C++ was not special.

Further advantages of this DSEL are that programmers

would not need to learn an entirely new programming lan-
guage, nor would they have to change to a novel compiler
implementing the host language, which may not be available,
or if it were might be impossible to use for more prosaic
business reasons.

VI.

Investigation of the properties of [9] could be presented, by
reimplementing SPEC2006 [12] and contrasting the perform-
ance with the literature. The definition of safe-colln has not
been an optimal design decision: a better approach would have
been to define ranges that support locking upon the underlying
collection, changing this would not invalidate the rest of the
grammar, as this would only affect the overloads to the data-
parallel-algorithms. The DSEL may need to be extended to
admit memoization.

FUTURE WORK
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